2019-2020

SEMESTRE

1

Prof: KARIMINE

Exercice 1

Soit \boldsymbol{x} un réel résoudre les équations suivantes:

0 a
$$3x - \sqrt{5} = x$$

$$\boxed{\underline{b}} \ \frac{x}{5} + \frac{x-1}{2} = 3$$

$$(3x-1)(x+2)=0$$

$$\boxed{\text{d}} \ (2x+1)(3x-2) + (2x+1)(5-x) = 0$$

$$\frac{9}{4} - (x+1)^2 = 0$$

$$\boxed{ \left[\left[2x - \frac{1}{3} \right] \left(x - \frac{1}{\sqrt{2}} \right) \left(\sqrt{3} + 1 \right) = 0 \right] }$$

2 Résoudre les inéquations suivantes, puis représenter les solutions sur une droite graduée

$$oxed{a} 3x - 5 \leqslant x + 3$$

b
$$7(x-1) + x < 10x + 2$$

$$\boxed{\underline{c}} \sqrt{2}(x-1) > x-1$$

$$oxed{d} x - rac{1+2x}{4} \geqslant 1-3x$$

Exercice 2

Soit ABC un triangle tel que BC = 6 et AB = 3

$$oldsymbol{0}$$
 Construire les points M et N tel que $\overrightarrow{AM} = \frac{3}{2}\overrightarrow{BC}$ et $\overrightarrow{BN} = -2\overrightarrow{BA}$

$$m{Q}$$
 Montrer que $\overrightarrow{MC} = \overrightarrow{AB} - \frac{1}{2}\overrightarrow{BC}$

$$lacktriangledown$$
 Montrer que $\overrightarrow{MN}=3\overrightarrow{AB}-rac{3}{2}\overrightarrow{BC}$

 ${\bf \Phi}$ En déduire que les points ${\bf \textit{M}}$, ${\bf \textit{N}}$ et ${\bf \textit{C}}$ sont alignés

Exercice 3

Soit ABCD un carré tel que AB=3

- $oldsymbol{0}$ Construire le point $oldsymbol{E}$ l'image de $oldsymbol{B}$ par la translation $oldsymbol{t}_{\overrightarrow{AC}}$
- $m{2}$ Construire le point $m{F}$ l'image de $m{D}$ par la translation $m{t}_{\overrightarrow{AC}}$
- $oldsymbol{\$}$ Montrer que $oldsymbol{C}$ est le milieu de $[oldsymbol{DE}]$
- Simplifier

$$\overrightarrow{a}$$
 $\overrightarrow{AB} + \overrightarrow{AD}$

b
$$\overrightarrow{AB} - \overrightarrow{AD}$$

$$\stackrel{{}_{\square}}{=} \overrightarrow{CD} + \overrightarrow{CE}$$

$$\overrightarrow{AB} + \overrightarrow{CA} + \overrightarrow{BC}$$

6 Montrer que (BD)
$$\parallel$$
 (EF)

6 En déduire que (EF)
$$\perp$$
 (AC)

$$m{0}$$
 Quelle est l'image de ABD par $t_{\overrightarrow{AC}}$